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Abstract

One-way shape memory effect (SME) is not suitable mechanism for application to the repeated actuation of an shape
memory alloy (SMA) wire because the host structure does not return to its initial shape after it cools down. In the pre-
sent study, the two-way SME under residual stress is considered. A structure using the two-way effect returns to its ini-
tial shape by increasing or decreasing temperature under an initially given residual stress. A thermo-mechanical
constitutive equation of SMA proposed by Lagoudas et al. was employed in the present study. Laminated composite
plate and beam are considered as simple morphing structural components. The modeling of plate and beam are based
on first-order shear deformable laminated composite plate theory with large deflection and large deformable beam the-
ory respectively. Numerical results of fully coupled SMA-composite structures are presented. The proposed actuation
mechanism based on the two-way SMA effect and a simulation algorithm can be used as a powerful morphing mech-
anism and simulation tool for structures.
© 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Shape memory alloys (SMA) wire and patch are often used in smart structures as active components
(Birman, 1997). Their capability to provide large recovery forces and displacements has been useful in var-
ious engineering applications, including devices for controlling the shapes of spaceship antennas, aircraft
wings, and submarine sterns or the vibrations of these structures.
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There are two ways to transform the phase of SMA. One is by changing temperature and the other, by
applying stresses. The phase transformation by a temperature change is specified by four different temper-
atures i.e. martensite finish (M), start (M), austenite start (A4;) and finish temperatures (Ay). Phase trans-
formation is accomplished at each of start or finish temperature. And these four transformation
temperatures strongly depend on the applied residual stress.

Stress induction at a given temperature brings about phase transformation from the austenite phase to
the detwinned martensite phase. Here, ‘detwinned’ means deformed phase that is deformed by stress induc-
ing at austenite or martensite phase. The phase transformation by this process is similar to the deformation
process in plasticity. But in phase transformation of SMA, the yield stress strongly depends on the temper-
ature, that is, the yield stress varies as the temperature varies.

Shape memory effect and superelasticity (pseudo-elasticity) of SMA are usually considered in the appli-
cation of actuators. First, when SMA is initially in the austenite phase at a certain temperature between the
austenite finish and martensite start temperatures, stress induction causes the so-called “forward phase
transformation”, that is, transformation from the austenite phase into the detwinned martensite phase.
During this process, we can obtain a large residual strain, whose maximum value reaches up to 9%. After
reaching the maximum strain, heating above the austenite finish temperature removes the transformation
strain; this removals is called ““the reverse transformation”. In reverse transformation, large recovery force
of SMA can be obtained. In NiTinol, the recovery force is between 500 and 900 MPa. This cyclic process is
called as shape memory effect (SME).

Second, when SMA is at a certain temperature above the austenite finish temperature, induced stress trans-
forms the SMA from the austenite phase into the detwinned martensite phase. Unloading the stress allows the
SMA to recover its initial shape by transforming from the detwinned martensite into the austenite phase. This
loading (forward transformation) and unloading (reverse transformation) process is known as pseudo-elastic-
ity. Most engineering applications using SMA takes advantage of the above mentioned two properties of SMA.

Recent researches on SMA have mainly focused on two items. One is the characterization of the thermo-
mechanical behavior of SMA materials (Tanaka et al., 1986; Liang and Rogers, 1990, 1992; Brinson, 1993;
Brinson and Lammering, 1993; Abeyaratne et al., 1993; Abeyaratne and Kim, 1997; Lagoudas et al., 1996)
and the other is the actuator application of one-way shape memory effect (SME). However, the one-way
effect cannot provide suitable mechanism of SMA actuator because the host structure does not return to
its initial shape after it is cooled. Therefore, in the present study, we consider the two-way SME under resid-
ual stresses. An SMA wire was attached to the midpoint or both edges of a composite panel. This panel
returns to its initial shape when the temperature of SMA is increased or decreased in the range of applicable
temperature under the initial residual stress.

In the modeling of the thermo-mechanical behavior of SMA, a phenomenological material model (Boyd
and Lagoudas, 1996; Lagoudas et al., 1996) based on Gibb’s free energy function was employed. The Gibbs
free energy (which is stress-based) is chosen herein, instead of the Helmholtz free energy (which is strain-
based), to facilitate the comparison between model prediction and experimental result, which are often per-
formed using stress control. Evolution equations for internal variables represent the dissipative material
behavior. Thermo-mechanical consistency was ensured because the constitutive model satisfied the
Clausius—Duhem inequality (Truesdell and Noll, 1965). Also, to solve the SMA constitutive equation,
we used the Cutting Plane Return Mapping Algorithm (Qidwai and Lagoudas, 2000; Simo and Hughes,
1998; Lubliner, 1990). These are described in Section 2. In Section 3, laminated composite plates and beam
are considered as simple morphing structural components. The modeling of these components was based on
the first-order shear deformable laminated composite plates with von Karman nonlinearity and the large
deformable beam respectively. Solution algorithm for the geometric nonlinear problem (Newton—-Raphson
Method) is described (Zienkiewicz and Taylor, 2000).

The numerical analysis algorithm for SMA—composite coupled structures is presented in Section 4. This
algorithm integrates the analytical solution for SMA and FEM solution for host structures.
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Numerical solutions in Section 5 reveal the various deformable behavior of the assembly structure of
SMA wire and composite panel in the applied temperature range. The results of numerical simulation of
the panel-morphing based on the two-way effect of SMA under residual stress are presented.

2. SMA constitutive model
2.1. Thermo-mechanical constitutive equation for SMA

Shape memory alloy (SMA) can transform itself by moving into austenite or martensite phase. To pre-
sent the phase transformation, the total Gibb’s free energy of SMA is expressed as a function of stress, tem-
perature, and mixing region Gibb’s free energy. Stresses and temperatures are main factors in the phase
transformation.

G0y, T) = GMay, T) + £[GCM(0, T) — GM(a, T)] + G™ (1)
where G™* is the Gibb’s free energy in the mixing region which depends on the inelastic strain during trans-
formation. This equation is similar to the plastic hardening function to describe plastic deformation.

Gibb’s free energy in the mixing region is a function of stress, temperature, martensite volume fraction,
and transformation strain. Transformation strain is generated by the small change of stress and tempera-
ture. Thus, the Gibb’s free energy in the mixing region can be assumed as a function of only the martensite
volume fraction (£) and transformation strain (eﬁj).

G™X = G™* (05/7 T,¢, 8}/) = f(év 8;,-) (2)
From Egs. (1) and (2), the total Gibb’s free energy of SMA is rewrote as below:
0L 1 1 oL 1 o o T o o
G‘(O’[j,T) = _;isijkla"jakl_;aijG[jAT+C |:AT—T11‘1 <TO>:| _S0T+u07 a=AorM (3)
G(oy, T, & 85) = G0y, T) + E[GM (0, T) — G oy, T)] + £ (&, 8)) (4)

Eq. (3) describes the uni-phase Gibb’s free energy. In order to express martensite Gibb’s free energy (o« = M)
or austenite Gibbs free energy (o = A), respectively, uni-phase Gibbs free energy is used for a unified
expression. It consists of two internal variables, that is, stress and temperature and it can be obtained from
Gibb’s free energy and the st law of thermodynamics. Using this uni-phase constitutive equation and mar-
tensite volume fraction, Eq. (4) describes the total Gibb’s free energy, which expresses the relation between
two different phases. Here, using the hardening (transformation) function f'( ,8}:].) similar to the hardening
function in plasticity theory, the transformation function expresses energy dissipation and energy conser-
vation. Eq. (4) cannot describe the reorientation effect in the microscopic point of view. But this equation
adequately describes the macroscopic phenomenological behaviors of SMA.

G(oy, T,¢ ) = f%%a : S 67%6: [a(T — To)] +c[(T To) — Tln <7T0>} =507 +uy + f(&)
()
S =8+ EAS A8 =M — sA
o= o™ 4 EAa Ao = oM — oA
ci=cr+EAc Ac=cM —cA (6)
S0 := sp + EAsg Aso = spt — s

iy := ufy + EAuy Aug = ud' — ufy
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where S is the compliance, « is the thermal expansion, ¢ is the specific heat, s, is an initial entropy and uy is
the initial internal energy. Egs. (5) and (6) are obtained by changing Eq. (4) with properties of two phases,
that is, austenite and martensite phase of SMA.

SMA behaves hysteretically by stress inducing or temperature increasing, i.e. SMA transforms austenite
or martensite into detwinned martensite phase by stress inducing, and martensite into austenite phase by
temperature increasing. Such constraint conditions of SMA behavior are given by the thermodynamic ap-
proach, that is, Clausius—Duhem inequality (Trusdell and Noll strong local form) in conjunction with the
second law of thermodynamics (Ortin and Planes, 1989; Raniecki and Lexcellent, 1994; Sun and Hwang,
1993a,b; Boyd and Lagoudas, 1996). The following equation expresses the energy dissipation using the
2nd law of thermodynamics, i.e. Trusdell and Noll strong local form except for heat generation and radi-
ation (777 = 0).

Ti = 0, — pp — psT = 0 (7)

Since the total Gibb’s free energy has four internal variables which are a;;, T, &, ?l , the rate of total
Gibb’s free energy G can be written as

oG oG . 0G. oG,

G=20,0 27! _§é+at y )

8ij == 8}; + gltj (9)

Using the rate form of the total Gibb’s free energy given in Eq. (8) and the total strain, which is decom-
posed into the thermoelastic strain region and transformation strain region as given in Eq. (9), we can ob-
tain the following local dissipation rate:

In= ((Iij—/)aa—j:) & —p —55 =0, Ti=¢" >0 (10)

Here, ¢' > 01is a consistency condition, which describes energy dissipation. The hardening function f'(&, &)
is independent of the transformation strain and is always positive. In the present study, only isotropic trans-
formation hardening is considered, and the kinematic transformation hardening is neglected. Because the
micro-structure of SMA is changed during transformation, the hardening function must have a return
point. These conditions were mentioned in Lagoudas et al. (1996). Based upon the above mentioned con-
ditions, the transformation strain is expressed by the rate of the martensite volume fraction (&), which indi-
cates the extent of the transformation. From the above assumptions, we can use the following equations:

f=1@, O)=0, f(&) =0 (1)
= 4,k (12)

Here, A;; is a transformation tensor, which indicates the amount of transformation that occurred. The
transformatlon tensor A;; depends on the material constituents of SMA and the direction of axis. Inserting
Egs. (11) and (12) into Eq (10), the simple form of the energy dissipation equation is obtained as follows:

) oG\ . . ) ¢
T17=<<7ij/1fj—Pa—i>f=Hf>Y7 Th=¢ (13)

Here, IT is a thermodynamic force which was named from the concept that thermoelastic or transformation
behavior of SMA is generated by a mechanical force associated with the dissipative condition that occurs.
The condition ¢' > Y is consistency condition and consistency equation (¢' = IT1¢) is expressed by multi-
plying the thermodynamic force by the martensite volume fraction. Eq. (13) indicates that the energy is
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dissipated when ¢' exceeds Y. Y is a quantity similar to the yield stress in plasticity. This consistency con-
dition plays an important role in dividing regions into an elastic one and transformation one at a given tem-
perature by applying Kuhn-Tucker condition, mentioned below:

6¢
E=ign (14)
220 and ¢' <Y = A(¢d'— (£Y)) =0 (15)

I <+Y*, &=0:Thermoelastic Region

16
I =+Y", &> 0:Transformation Region (16)
Eq. (14) expresses the associative flow rule. The rate form of martensite volume fraction is associated with
the thermodynamic force (IT) and transformation strain is generated in the normal direction of the yield or
loading surface. Eq. (15) is a general form of the Kuhn-Tucker condition. Kuhn-Tucker condition is uni-
fied condition to describe two or more constraint conditions. It is used to satisfy one of the several con-
straint conditions of SMA constitutive equation in numerical analysis. If we apply these conditions
given in Eqgs. (13)—(15) to the SMA constitutive equation, we can obtain the Kuhn-Tucker condition of
the SMA constitutive equations given in Eq. (16). Here, Y* is the replaced value which is related to the
thermodynamic force similar to the relationship between consistency equation (¢') and yield stress (Y).
The positive sign is used for the forward transformation (cooling) and the negative sign is used for reverse
transformation (heating) process respectively, because SMA behaves hysteretically in the loading—unload-
ing and heating—cooling process. Since it is assumed that the SMA deformation is rate-independent, the
consistency equation ¢' is rate-independent.

¢ =0 (17)

Eq. (17) expresses a tangent-consistency condition during transformation. By means of consistency-
thermodynamic force relationship given in Eq. (13) and the assumption that the dissipation poten-
tial has a quadratic form, the tangent-consistency condition about thermodynamic force is derived as
follows:

I1=0 (18)

Eq. (18) also expresses a tangent-consistency condition during phase transformation. From Eq. (18), we can
obtain the tangent form given as

GH GH H GH.
= = 1
oG
H:aiiAii_pE

1 T
:o:/l—l—zazAS:a—i—o:Aoc(T—To)—pAc{(T—To)—Tln(7>]
0

+ pASOT — pALl() — (20)

of
Poae
¢
The rate forms of stress, strain, temperature and martensite volume fraction in the transformation region
are derived from Egs. (19) and (20).
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2.2. Numerical algorithms of SMA constitutive model

For the numerical solution of SMA constitutive equation, we use the Convex Cutting Plane Return
Mapping Algorithm presented by Simo and Hughes (1998). The advantage of the given algorithm lies in
its simplicity and bypassing the need for computing the gradients (less time cost in calculation), because if
one adds another internal state variable in the model, more gradient quantities must be accounted for.
Evaluating such gradients may prove difficult and computationally expensive. Through the comparison with
closest point return mapping algorithm, the superiority and advantage of convex cutting plane return map-
ping algorithm are explained minutely in the reference (Qidwai and Lagoudas, 2000). Though closest point
projection return mapping algorithm uses the tangent form, Eq. (19), convex cutting plane return mapping
algorithm uses the discrete form of thermodynamic force, Eq. (31) which is more simple and easier to calcu-
late than Eq. (19).

The rate form of the thermoelastic, transformation and total strains are derived as follows:

. G -
8§j:—paaij:S:O'—‘rO((T—T0) (22)
SUZEO"F&(T*TO)‘FSL (23)

On the other hand, because the total strain is a function of stress, temperature, and martensite volume
fraction, we can obtain the following equation:

O¢ Rl O¢
de = e da—i— dTi édf Sda—&-ochiaédé
=Sdo+och:|:[AS:J+A0<(T—T0)+A]d§ (24)

Here, the positive sign indicates the forward phase transformation and the negative sign indicates the reverse
phase transformation. Because the convex cutting plane return mapping algorithm is the forward Euler
method (f = 0), the rate form of the transformation strain at ¢,+; can be expressed in the following forms:

8:/ = Aljé = 8;,+1 = 8:«, + (érH»l - én)/ln = Ag,t1+] = Aén+l/1rl (25)

By applying Eq. (25) to Eq. (24) and noting that ¢ and T are fixed during the return mapping (transforma-
tion correction) stage, we can express the transformation strain increment at an isothermal process.

A? _§n+] : Aan+l + [AS P O0nt1 + AOC(T,1+1 - TO)]AénJrl (26)

‘n+1 T

§n+l = SA + érlel(SM - SA)

5(,,+] = OCA + én-%—l(ocM - OCA)

(27)

(1) Thermoelastic prediction (I1 < +£Y*)
Because the deformation behavior of SMA is within the elastic region, S;l and &, have certain values and
¢! and &, are fixed to zero.

=1 _
O',(qoll = Sn : [8n+1 — OCn(TnJrl — T()) — 8” (28)

Hn+l = H( Ont1> Tn+17én) < &Y (29)
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(2) Transformation correction (Il > +Y* — [ = +Y*)

In the region of transformation, thermodynamic force is greater than £Y*. This deviated value causes
the transformation strain. To prevent this undesirable transformation strain, the deviated thermodynamic
force is modified to have £Y*. By Eqgs. (25) and (26), the increment of stress during transformation is
expressed in the following form:

AGu1 = —=S,11 t [£(AS : 61 + ATy — To) + A,) A (30)

o Residual thermodynamic force
Thermodynamic force is a function of stress and martensite volume fraction as shown in Eq. (20), i.e
I,y := (0,41, &,+1). After discretizing the thermodynamic force, following equation is derived:

oI, oIl

My + =502 Ady + =35 Mt g, =47 (31)

o¢

Inserting Eq. (30) into Eq. (31), the rate form of martensite volume fraction is derived.
11,11 — (£Y)

Ut T IAS 0 ATy — To) + A,] — et

4

A6n+l =

(32)

(3) Geometrical interpretation

Using the rate form of martensite volume fraction derived in Eq. (32), all the internal variables at 7, of
SMA constitutive equation are obtained by adding the incremental quantities the values given at ¢, as
below:

§n+1 = én + AénJrl
8:1+1 = 811 + A8:1+1 (33)

Ont1 = 0y + AO—IH—I

3. Host structure analysis

Because the transformation strain of SMA is over 5%, the deformation of the structure using the SMA
effect becomes larger. Thus, we should consider the geometric nonlinearity in the host structure to accu-
rately predict the behaviors of the host structure and SMA wire combined.

In the present study, we consider the first order shear deformable plate theory with a large deflection
(von Karman plate theory) and large deformable beam theory with Green—Lagrangian strain in composite
structures. The schematics of plate and beam for finite-element mesh are shown in Fig. 1. Here, four-node
element is used for plate model and nine-node plane element is used for beam model, respectively.

3.1. First-order shear deformable plate theory with large deflection

The displacement assumption for a first order shear deformation plate is given as

ua:ug_zom M3:W(X17X2)7 OC:1,2 (34)

where #0 is the mid-plane in-plane displacement and 6, is the rotational displacement. u;, uy, w are

translational displacements in (X7, X5, X3) directions, respectively. X7, X, are in-plane coordinates in the
undeformed configuration.
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X, X,
Wal
@) X,
X A

¢t

(b) T X

1

Fig. 1. The schematics of (a) plate and (b) beam for finite-element mesh.

The strain—displacement relationship of each part is express as below:

(1) Membrane part

1 (o’ ol ow d
81ﬂ=5<”a+ Ly W—W>, 0 f=12 (35)

oX, " ox,  ox, X,

(2) Bending part

1 /00, 00g
=—= =12
89‘/5 2 (aX/; + 6X1>Z7 a, ﬁ ) (36)
(3) Transverse shear part
0
M:-eﬁa%, x=12 (37)

3.2. The large deformable beam theory

The nonlinear geometric relationship between strain and displacement field is given as follows for beam
theory

1(6% Oup  Ou, Ou,
i A '

81/325 OX/; 6X1 aXy 6)([;)’ o‘vﬁa’y:LZ (38)

3.3. The numerical algorithm of geometric nonlinear problem

Newton—Raphson method is used for FEM analysis on the behavior of the host structure from geomet-
ric nonlinear plate and beam theories. Here, total Lagrangian description is used and the four-nine-node
quadrilateral elements are used. The tolerance is chosen to 1.0 x 10~¢ for the convergence criteria of the
algorithm.

¢ = B(@)i (39)
§=Ce=CB@) (40)
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d=[w], 4=1[u,v,w,04,0,] : forvon Karman plate theory (1)
d=1iu=[u,v] : for large deformable beam theory
Oe oS
=~ =B _~—CB(d 42
= =B@), - =CB@) (42)

Eq. (39) is the unified expression of strain—displacement relation in both von Karman plate theory (Egs.
(35)—~(37)) and large deformable beam theory (Eq. (38)). Eq. (40) shows a unified stress—strain (displace-
ment) relation. Eq. (41) describes d@ and # in the above mentioned equations. Eq. (42) indicates the deriva-
tion of the stress and strain about the displacement.

Using Eq. (42), the internal force vector and the linearization equation are given as below:

(1) Internal force

o / B"(d@)S dQ, (43)
Q
(2) Linearization
6§T(a) . _ext
/BT(a)CB(a)dQO+/ —— §dQ pii = f (44)
" ~ o O

Here, i is the nodal displacement vector, @ is the displacement vector associated with geometric nonlin-
earity, / is the node number, ¢ is the Green—Lagrange strain matrix, S is the second kind Piolar—Kirchoff
stress matrix and C is the stiffness matrix.

3.4. The stiffness matrix of host structure
Ey vk 0

vioE, K, 0 , viEy = vy E) (45)
0 0 Gi(1 = viavay)

d\.)

1 — vy

Q is the stiffness matrix under the in-plane stress assumption when the fiber direction is aligned to the
direction 1. Here, E| is the Young’s modulus of the fiber direction, E, is the Young’s modulus of the orthog-
onal direction of the fiber and v;,, v,; are the Poisson’s ratio.

0, = 0y, - c0s*0 + Q,, - sin*0 + 0, - 2c0s20 - sin*0 + Oy - 4cos?0 - sin*6
01, = (O + On — 404) - €020 - sin*0 + Oy, (cos*0 + sin’0)

0y, = 0, - sin*0 + 2(0,, + 20) - c0s?0 - sin*0 + Q,, - cos*0

016 = (Q11 — 01y — 20) - €080 - sin 0 + (O, — Oy + 20g5) - cos 0 - sin’0
Os5 = (011 — Q1 — 204) - €08 0 - sin*0 + (01, — Oy + 2Qs) - c0s°0 - sin 0
L Ogs = (Q11 + 02y — 201, — 2046) - €020 - sin”0 + Qg (cos*0 + sin*0)

Eq. (46) expresses the each layer stiffness component when the fiber direction is aligned with the angle 0
with the x-axis.
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i

C= (zx — 25-1) (47)

k=1

Q)

Here, C is the stiffness matrix of the overall layer, @k is the stiffness matrix of the kth layer with a certain
fiber angle direction. z; and z; _; are the top and bottom position coordinate value in the thickness direc-
tion of the kth layer. From the summation of each layer, the stiffness matrix of host structure is calculated.

4. Numerical algorithm for SMA—composite structure

First, the length of an SMA wire and the deformation of a composite structure are calculated by the
constitutive equation derived in Sections 2 and 3 at a specified temperature and stress. Next, the length
of the SMA wire is calculated at a new temperature and initial stress. If there is a difference in the defor-
mation between the SMA wire and the host structure, updated stress (or force) is applied to both the SMA
wire and the composite structure. The two lengths are compared until the difference of the two length con-
verges within a specified error range (in the present study, this range was chosen to be 107°). At this time,
the converged stress is the proper equilibrium stress for the given temperature, that is, the actuator device
should be in static equilibrium at a certain temperature and stress (force) condition. This algorithm is
described in the flow chart shown in Fig. 2.

——————————— f————— Insert new temperature for

r the next temperature step

|
3! | S l_ ________ i‘ ______ y oo a1
5 ' Compute SMA length at given temp. Compute the length between both edges of ]
4 & force condition structure at a certain force condition 1
8.
5! l l |

|
Ei g
< l Check the difference of both lengths o
o i |3
g - |

5]

5 18
2! ¢ !
3| I
5 Yes No :

! ]

Lo———. -‘ Go to new temperature state | ‘ Update force condition }- -

Fig. 2. Numerical procedure for simulation of the behavior of SMA—composite structure.

Table 1

SMA and composite material properties

SMA property ¢ = 0.30mm (SMA diameter) Composite material property (Graphite-epoxy Layer)
EA =30.0x 10°MPa EM=13.0x10°Mpa Geometry: 200mm x 10mm (case 1)

Vv=y™M=033 :200mm x 5 (7)mm (case 2)

o =11.0x10"%/°C M= 6.6x107/°C Thickness = 0.125mm

H =0.050 I1=0.00 Ege = 144.23 x 10> N/mm?

Ags = 301K (=28°C) Aogr= 316K (=43°C) Eoge = 9.66 x 10°> N/mm?>

My, = 273K (=0°C) Myr= 260K (=—13°C) G =4.14x 10> N/mm?

The superscript “A” indicates Austenite phase and the superscript “M” indicates Martensite phase.
The subscript “s” indicates “‘start”, the subscript “f”’ indicates “finish” and The subscript “0” indicates “stress free”.
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5. Numerical results and discussions
Material properties of SMA and composite material (G/E,) for structural analysis are given in Table 1.

We consider the fully trained SMA wire with 5% transformation strain. The SMA in the present study
is actuated by the one-way behavior by stress and also by the two-way behavior by temperature,

STRESS (N/m?)
STRESS (N/m?)
~

[

0sle
320 i
0.08

340 > 310

vvvvvv 0.04

305
(@) TEMPERATURE (k) 320 0 STRAIN (b) TEMPERATURE () 009 STRAIN
x10°
8
o 363K
<
8 - 343K —
i £
=4
3 a4 323K
e [%} /
ES @ —
2 £
o »
[iq
/
0.08 2 2
250 — oo
TEMPERATURE (K) 200" 0.0 SMA TOTAL STRAIN o 553 or o o
(©) (d) STRAIN
8 8
4x10 ,x10 A A
//(
PSEUDOELASTIC _—| . .
3 ~
<
E
< SME £
£ / o 4
s ?
w
@2
@ £ s
12}
['q
% 2
K 2
2 2
t @
@
/ 1
0
0
0 002 004 006 008 200 250 300 350 200 450

(e) STRAIN U] TEMPERATURE (K)

Fig. 3. (a) Simulation results of stress-temperature-strain SMA behavior in pseudo-elasticity, (b) simulation results of stress—
temperature-strain SMA behavior in pseudo-elasticity and shape memory effect (SME), (c) simulation results of two-way shape
memory effect at each residual stresses (0, 200, 400, 600 Mpa), (d) simulation results of stress—temperature SMA behavior in pseudo-
elasticity, (e) simulation results of stress-temperature SMA behavior in pseudo-elasticity and shape memory effect (SME), (f)
simulation results of residual stress—temperature curve (two-way shape memory effect) at each residual stresses (0, 200, 400, 600 Mpa)
with the four transformation temperature curves.
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simultaneously. It is reported that the two-way transformation strain of Cu (copper)-Zn (zinc)-Al (alum-
inum) SMA is 2%, but the two-way transformation strain of Ni-Ti SMA is 5% in many papers (Araujo
et al., 1999; Bo and Lagoudas, 1999; sak et al., 2003). In these reasons, we chose the 5% for the two-
way transformation strain.

5.1. Numerical simulation of SMA constitutive equation

Fig. 3(a)—(f) show the results of the numerical simulations of the pseudo-elastic behavior of SMA above
the austenite finish temperature (Fig. 3(a) and (d)), the behavior of the shape memory effect between the
austenite finish and martensite start temperature (Fig. 3(b) and (e)) and the behavior of the two-way shape
memory effect on the each residual stress (Fig. 3(c) and (f)). In Fig. 3(f), the four transformation temper-
ature curves along the residual stresses are indicated. The residual stress-transformation temperature equa-
tion is derived as follows (Lagoudas et al., 1996):

dr H + ASc + Aa AT

do pAsy + Aoc

(48)

In the four transformation temperature curves along the residual stress (Fig. 3(f)), the start and finish of
phase transformation is accomplished at each transformation start and finish temperature in heating—cool-
ing process.

These results were obtained from the SMA thermo-mechanical constitutive model derived in Section 2.
The yield stress for the transformation varies as the applied temperature varies. The generating force also
varies as the temperature applied to the SMA varies. These results show that the SMA actuation force can
be applied to morph a structure. In addition, using the proper residual stress, SMA wire can be actuated in
the acceptable range of temperature that we are to apply.

5.2. Numerical simulation of SMA—composite structure: case 1

We first considered the SMA—composite structure whose schematic device is shown in Fig. 4. Both edges
of the composite panel do not move toward the z direction, and the SMA wire is attached to the mid point
of the panel. The attached SMA wire which is initially in the austenite phase state was fully transformed
into the fully detwinned martensite state at room temperature 301 K. The recovery force of host structure
generates the residual stress in the SMA wire. And the recovery force is large enough to make SMA wire be
fully transformed to the detwinned martensite phase.

For numerical simulation of the behavior of this device, we used the first order shear deformable com-
posite plate theory with large deflection (von Karman plate theory) for the host structure. First, we simu-
lated the behavior of the SMA wire and panel for two cases of layers (16-ply and 24-ply plates). Next, the
case of two different SMA wire lengths was simulated.

<+— Wall

SMA wire ﬂ/

Clamping device

[ )

Fig. 4. Schematic of actuator device for repeated application: case 1.



M. Cho, S. Kim | International Journal of Solids and Structures 42 (2005) 1759-1776 1771

8
10810 2 T 0.07
—— 24PLY PN
wa 16PLY 2 -+
8 A
< p 0.05
z 5 z
2 X 004
w =
@ 6 1]
E 4
p L 0.03
g 5 2
-
'R
2 4 0.02
4 0.01
2 L 0
250 300 350 400 450 500 250 300 350 400 450 500
(a) TEMPERATURE (K) (b) TEMPERATURE (K)
1.4 . 26
—— 24PLY
1 16PLY
z 22 = z
o £ /
§ 0.8 E £ £
x g 18 * T
W oo = & *
= i 3
= o | s
2 i < ;
=] S LR |
g 04 Q e ek /—,—70—0
7] = y Pl
z = 10
w =
£ o2 < / /
< o
S : /// /
0 ._,4:/_/
-0.1 2
250 300 350 400 450 500 250 300 350 400 450 500
(c) TEMPERATURE (K) (d) TEMPERATURE (K)
200
—e— 24PLY
coae 16PLY
196 == \\
TE- \ .
E 192 S . é
a )
G \ 2
u e &
I 3 2]
c B i
Z 104 ®, s g7
= % s, a
0 ‘.,_ 'A_.
180 A A
Mosaaatalaa
176
250 300 350 400 450 500 N
(e) TEMPERATURE (K) () smaToTAL STRAIN TEMPERATURE (K)
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Fig. 7. Schematic of actuator device for repeated application: case 2.

In the present study, two different quasi-isotropic lay-up configurations [0/45/90/—45],, and [0/45/90/
—45];, were considered. The numerical simulations were performed with various numbers of layers and wire
length of SMA. The results are depicted in Fig. 5 and Fig. 6, respectively. The number of layers is a sim-
ulation parameter in Fig. 5.
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Fig. 8. (a) Stress—temperature curve for case 2, (b) total strain-temperature curve for case 2, (c) martensite volume fraction—
temperature curve for case 2, (d) plate center deflection-temperature curve for case 2, (¢) SMA length-temperature curve for case 2, (f)
stress—total strain-temperature curve for case 2, (g) force-deflection—temperature curve for case 2, (h) force—deflection curve for case 2,
(i) SMA-composite structure behavior in cooling process for case 2 (Width 7mm).
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Fig. 8 (continued)

As shown in Fig. 5(a), for example, in the case of the actuator with the 24-ply host structure, in heating
process, the actuator is not deformed until the temperature of SMA reaches austenite start temperature
with the residual stress. Then the actuator is deformed linearly while the temperature of SMA changes
austenite start to austenite finish temperature. Above austenite finish temperature with the residual stress,
the actuator is in the fully deformed state and is not deformed by heating any more. In cooling process after
fully deformed by heating, the actuator is not deformed in backward direction until the temperature of
SMA reaches martensite start temperature with the residual stress. Then the actuator is deformed linearly
and reversely while the temperature of SMA changes from martensite start to martensite finish temperature.
Below martensite finish temperature with the residual stress, the actuator returns to its initial shape. As
shown in Fig. 5(d), the initial deflection of the structure with residual stress is larger in the thin laminates
than the thick laminates because the thick one is stiffer than the thin one. With fewer layers (number of
layer = 16), internal variables, except the increment of stress, change rapidly. For stiffer host structures,
the SMA-composite structure is actuated under a relatively high temperature and large stresses. The



M. Cho, S. Kim | International Journal of Solids and Structures 42 (2005) 1759-1776 1775

deformation behavior of the current SMA actuation device for three parameters is shown in Fig. 5(f). As
the number of layer becomes larger, the larger actuating range of stress and temperature is required.

The wire length of SMA is a simulation parameter in Fig. 6. The length of SMA wires are 87.7mm and
187.7mm respectively (i.e., the lengths between edge of the panel and ceiling are 100mm and 200 mm
respectively). The deformation rate remains almost unchanged. As shown in Fig. 6(a) and (e), the stress that
causes the maximum deformation is proportional to the length of SMA wire. In addition, a larger range of
temperature is required to actuate longer SMA wires. Fig. 6(f) shows the stress—total strain—temperature
relationship three dimensionally. As the SMA wire length gets longer, the relatively larger actuating range
of stress and temperature is required.

Considering the parametric studies on the number of the layers of composite plates and the length of a
SMA wire, the effect of the host structure stiffness on the morphing of SMA—composite structure is much
larger than that of the length of SMA wire.

5.3. Numerical simulation of SMA—composite structure. case 2

Second, we consider a SMA—composite device whose schematic is shown in Fig. 7. An SMA wire is at-
tached to both edges of the composite panel. Similar to the preceding device (Fig. 4), the SMA wire has
been fully transformed at the room temperature, 301 K. For numerical simulation of this device, we use
the large deformable beam theory for host structure. The host structure of actuators can be analyzed by
only two-dimensional plate model but we wanted to show various types of finite elements can be employed
in host structure modeling. In this reason, we use the plate model for the first case and the 2D beam model
for the second case. To avoid the in-plane shear locking phenomena in the plane bending deformation of
beam model, the nine-node element is used. The lay-up configurations of the beam are given as [0/45/90/
—45],,. While most of the previous researches have reported the linear behaviors only, in the present study,
the characteristics of nonlinear behavior of SMA actuator-host structure assembly are considered and the
nonlinear behavior is shown significant in this device.

The simulation results of the device given in Fig. 7 are shown in Fig. 8. The stress—temperature curve is
almost linear, but the internal variables except stresses rapidly changes in the temperature range 320-343 K
for the Smm-width case and in the temperature range 340-373K for the 7mm-width in 16-ply composite
beam during cooling process. This rapid change coincides with the fact that structures deform abruptly at
the critical load. Fig. 8(f) shows the behavior of the SMA wire, and Fig. 8(g) and (h) depict the tempera-
ture—force—deflection relationship and the force—deflection behavior of the host structure, respectively. The
deformed shapes at the various temperatures of SMA wire in cooling process are plotted for the 16-ply
composite beam in Fig. 8(i).

6. Conclusion

Until now, research for SMA was limited to the study of the thermo-mechanical behavior of SMA mate-
rials and to the one-way actuator application. However, one-way shape memory effect cannot be properly
applied to repeated actuation because structures cannot recover their original shape after the SMA wire is
cooled to room temperature. Besides, commonly the martensite finish temperature is too low to utilize the
two-way SMA effect without the residual stresses in the SMA actuator.

Thus, two-way SMA effect under residual stress was considered in the present study. The effect of resid-
ual stress of the SMA—composite system makes the host structure returns to its original shape after cooling
down to the desired temperature (for example, room temperature). The stiffness of host structure and the
length of the SMA wire are two most important parameters in the design morphing structures with an SMA
wire. The geometric nonlinearity of the host structure was considered because the SMA wire generates large
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actuation strain, which causes the large deflection of the host structure. The deformation analysis of the
SMA wire through the constitutive equation of SMA and the FE analysis of the host structures were com-
bined to predict the behavior of a smart structure with an SMA wire. Two simple devices using the two-way
shape memory effect were proposed and they were useful as actuation devices, as confirmed by numerical
simulations. To validate the performance of the proposed devices, experimental study is under progress.
The present actuation devices using the two-way shape effect can be applied to various structures requiring
shape-morphing.
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